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ABSTRACT
Machine learning (ML) assets, such as models, datasets, and meta-
data—are central to modernML workflows. Despite their explosive
growth in practice, these assets are often underutilized due to frag-
mented documentation, siloed storage, inconsistent licensing, and
lack of unified discovery mechanisms, makingML-asset manage-
ment an urgent challenge. This tutorial offers a comprehensive
overview of ML-asset management activities across its lifecycle,
including curation, discovery, and utilization. We provide a catego-
rization of ML assets, and major management issues, survey state-
of-the-art techniques, and identify emerging opportunities at each
stage. We further highlight system-level challenges related to scala-
bility, lineage, and unified indexing. Through live demonstrations
of systems, this tutorial equips both researchers and practitioners
with actionable insights and practical tools for advancingML-asset
management in real-world and domain-specific settings.
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1 INTRODUCTION
The realm of Machine Learning (ML) and Artificial Intelligence (AI)
witnesses the creation of large amounts ofML models and relevant
data resources. For example, data platforms such as HuggingFace [1]
host over 1.5 million models, with 100, 000 new models added each
month, occupying over 17 PB of storage [24]. These are valuable
ML assets. Generally speaking,ML assets are high-value artifacts
that may contribute to ML-driven data analysis workflows. Such
ML assets include, but not limited to:
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Figure 1: ML-Asset Management Lifecycle Overview

• Datasets: raw datasets, standardized documentation, annotated
(training) data, validation data, test data, generated (benchmark)
datasets, open data samples, feature vectors, etc;

• Models: pre-trained, fine-tuned, or foundation ML models; and
relevant supporting code resources such as training pipelines,
software libraries (e.g., AutoML components, LLM agents, statis-
tical or physical models);

• Metadata: ontologies or data constraints/rules; (open source or
proprietary) licenses, scripts and prompts (e.g., for LLMs), prove-
nance data, data sources (e.g., contributors), hardware metadata,
domain-specific in-lab/instrumental/experimental data, etc.
The lack of management of rich sets ofML assets leads to high

maintenance costs, underutilized datasets and models, inefficiency
in workflow development, and security and trustworthiness con-
cerns. For example, over half of the models hosted in HuggingFace
have no accompanying model card (documentation), and less than
8% are properly licensed [24]. Having this said, there still lack a
standard characterization and through investigation of ML-asset
management issues. A cornerstone step is to establish a systematic
characterization of ML-asset management tasks and critical issues,
and to provide a structured management infrastructure for modern
ML-asset management. Data management community plays an
essential role in contributing fundamental and advanced data man-
agement techniques to support such needs – by treating ML assets
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Part 1: Motivation and Background (5 mins)
Part 2:ML-Asset Curation (22 mins)

• Metadata and Schema: Support Structured Understanding.
• Repositories and Infrastructure: Backbone of Discovery.
• Licenses: Enable Responsible Reuse.

Part 3:ML-Asset Search and Discovery (23 mins)
• Model and Dataset Search.
• Data-driven Model Selection.
• Model-driven Data Discovery.

Part 4:ML-Asset Utilization (25 mins)
• Collaboration: Workflow Aggregation and Automation.
• Reproducibility: Benchmarking and Model Provenance.
• Responsibility: Licensing and Ethical Asset Governance.

Part 5: System Challenges and Opportunities (15 mins)
• Storage and Scalability.
• Versioning and Lineage.
• Indexing and Searching.

Part 6: Demonstration (Split and merged into Part 2-4)

Figure 2: Tutorial Outline (90 minutes)

with the same rigor as data objects, we can enable storage and mod-
eling, queries and indexing, version control, lineage tracking, and
provenance, among other critical capabilities. This tutorial aims to
provide an overview of major ML-asset management tasks, syner-
getic research efforts that provide enabling techniques for effective
ML-asset management tasks, and a vision for future opportunities.
Target Audience. Our targeted audience comprises academic re-
searchers, industry practitioners and stakeholders in both (1) data
management, data science, machine learning, AI, and (2) multidis-
ciplinary areas where ML-driven analysis plays critical roles.
Difference with Existing Tutorials. We structure our tutorial
following a “life-cycle” analysis of ML assets, from the modeling
and curation, resource access and discovery, to their utilization in
downstream tasks. To ensure effective learning experience, we will
incorporate a series of live, interactive demo to reveal the asset
management techniques and their connections.
Learning Outcomes. Participants will gain a practical and con-
ceptual understanding of ML-asset management across, including
(1) How to characterize and curateML assets effectively;
(2) How to store, index, and retrieveML assets at scale;
(3) How to manage provenance, versioning, and licensing; and
(4) How can ML-asset management support reproducibility, re-

sponsible, and collaborative AI?

2 TUTORIAL OUTLINE
We propose a 1.5-hour tutorial to review the existing progress,
challenges, and opportunities ofML-asset management (outlined
in Fig. 2). We next describe the detailed agenda for each part.

2.1 ML-Asset Curation
ML-asset curation is essential to harnessing the growing abundance
of datasets and models. Effective curation ensures that assets are
not merely stored but also well-described, reusable, and regulated.

Metadata and Schema: Support Structured Understanding. Meta-
data describes the essential properties of datasets and models, in-
cluding their origin, modality, training configuration, evaluation
metrics, known limitations, etc [2, 37]. It also captures interac-
tions between assets, such as model performance across different
datasets [32]. High-quality metadata helps clarify where an asset
works well and where it might not, thereby minimizing misuse.

Community efforts have introduced concepts like Data
Cards [57] and Model Cards [44] to add structures to meta-
information of ML assets. One step forward, recent work such
as CRUX [72] provide knowledge graphs ofML assets by linking
various types of “Cards” (structured data objects). Efforts on link-
ing ML assets with data dependencies, license compatibility, and
functional calls among ML assets with graph models opens the
door for formal modeling, schema, and normalization, declarative
manipulation, provenance, compatibility checking, among other
issues that are of both theoretical and practical interests.
Repositories and Infrastructure: Backbone of Discovery. Open
platforms such as Hugging Face [1], Kaggle [28], TensorFlow
Hub [65], and OpenML [50] have become community standards for
hosting ML models and datasets. They offer structured metadata
templates, tagging, version control, and integration with popular
ML frameworks for easy access and reuse. More recently, the emer-
gence of Data Markets [16] and Model Lakes [51] reflects a shift
toward infrastructure that supports scalable discovery and reuse of
ML assets. These repositories move beyond siloed storage, enabling
asset-centric querying, composition, and integration at scale.
Licenses: Enable Responsible Reuse. A unique aspect ofML assets
is the emergence of model-specific licenses, which are designed
to govern the use and distribution of model-related components
such as weights, checkpoints, optimizer states and architectures
through legal terms and agreements. Model-specific licenses in-
troduce three key differences compared to traditional software
licenses [59]: governance over remote access (e.g., Model-as-a-
Service [36]), restrictions on responsible AI use [9] and conditions
pertaining to model distillation and generated content. For example,
Gemma License [21] includes web access in its definition of “Dis-
tribution” and states that the “transfer of patterns of the weights”
constitutes “Model Derivatives” governed by this license. Addition-
ally, Article 3.1 of Gemma License prohibits licensees from using
the Gemma model or its “Model Derivatives” in violation of its Pro-
hibited Use Policy. These tailored terms in model-specific licenses
significantly broaden the scope of governance and increase curated
objects, thereby complicating legal compliance inML systems.

There are several challenges and open opportunities in ML-asset
curation. First, incomplete or low-quality metadata, much of
the published metadata is manually entered without validation or
quality control [47], which harms metadata-based discovery. One
promising approach is automating metadata generation [5, 61] and
utilizing LLMs for enhancing semantics. Second, schema incon-
sistency: different platforms adopt different metadata schemas,
making integration and federation difficult. A community-wide
standard schema or ontology is necessary to facilitate widespread
adoption [23]. Third, license ambiguity and conflicts, for exam-
ple, license restrictions can propagate through model fine-tuning
chains, and some may be mutually exclusive (e.g., GPL-3.0 and



Llama3.1 Community License [17]). As model dependencies grow
deeper and involve more components, manual legal compliance
analysis becomes increasingly impractical [13, 14]. A formal license
curation framework that enables automated dependency reasoning
and compliance checking across assets is an essential next step.

2.2 ML-Asset Search and Discovery
Effective search and discovery are critical for the reuse ofML assets
and the acceleration of workflow construction [54].
Model and Dataset Search. Beginning with keyword and tag-
based filtering, which is widely used on platforms such as Hugging
Face [1] and Kaggle [28], these systems support faceted search
over structured metadata, enabling users to refine results based
on modality, task, or license through exact matches [7]. Recent
progress has brought about semantic and vector-based retrieval,
embedding models or datasets within a unified space for similarity-
based searches [31], with vector databases used to index model
and document embeddings for rapid similarity queries [69]. These
methods offer entry points for ML-asset discovery, but they tackle
various asset types independently and neglect valuable interactions.
Data-driven Model Selection. Given high-value datasets and
tasks at hand, a crucial question is: Which model should we use?
Brute-force evaluation is often infeasible due to the scale of mod-
ern model hubs [34, 63]. To address this, several works propose
transferability metrics, which rank pre-trained models by esti-
mating the label evidence on a target dataset, based on features
extracted from the models [48, 79]. Another direction leverages
meta-learning for model recommendation, where a recommender
is trained to predict model performance using the metadata of
ML-assets. This approach enables more precise and context-aware
ranking [33]. Graph learning-based recommenders may further
improve the quality of suggested models, by exploiting enriched
metadata/features, better-informed suggestions and annotations,
and more efficient cold-start strategies for new datasets [39, 70].
Model-driven Data Discovery. Recent research also advocates
that data discovery for ML models could be “model-driven”, with a
goal to identify data overwhich a givenMLmodel has high expected
performance and small training/testing overhead. This requires
finer-grained data manipulation that may integrate feature engi-
neering and data integration [38]. Methods utilizing table union
search to enhance data completeness and schema compatibility
may generate tables by semantically merging multiple contextual-
ized columnar data sources [15].Goal-oriented data discovery tai-
lors data selection to specific downstream tasks, guided by a target
utility function [18].Multi-objective data discovery incorporates
multiple user-defined model performance evaluation criteria, to
generate datasets that may optimize model performance across var-
ious performances [71]. Recent research also develop model-aware
data augmentation for LLM pretraining and fine-tuning [29, 74, 78].

Effective ML-asset discovery benefits from guarantees on robust
search, high-quality metadata, and context-awareness. Yet, several
challenges remain alongside opportunities. First, cold-start issue:
current methods depend heavily on underlying metadata, which
might be limiting for many tasks. Beyond enriching metadata, em-
bedding techniques to derive standardized representations directly

from raw assets content offers a promising solution. Second, dis-
covery at scale, searching through huge number of assets with
complex queries becomes computationally expensive. Scalable in-
frastructure (distributed retrieval, caching of embeddings, vector
databases, etc.) is needed. Third, semantic understanding: inter-
active discovery requires systems to understand both sides (model
and data) at a semantic level, making a unified representation space
that encapsulates the characteristics of various asset types crucial.

2.3 ML-Asset Utilization
The ultimate payoff lies in utilizing these well-organizedML assets
and supporting systems to improve applications and practices in
reproducible, ethical, and collaborative data science [3].
Collaboration: Workflow Aggregation and Automation.Workflow
aggregation involves creating modular ML workflows by selecting
compatible assets from repositories. This modularity enables col-
laboration [40], allowing teams from different disciplines and back-
grounds to collaboratively integrate and reuse components from
various sources [10]. Platforms such as Davos [62] and Texera [75]
have emerged to support these efforts. Modularized workflows can
be modeled as directed acyclic graphs (DAGs), providing a structure
foundation for aggregation approaches [64]. Beyond human-driven
collaboration, there is a trend toward automating workflow con-
struction using agents. Unlike traditional AutoML, which typically
requires extensive testing [45], multi-agent approaches frame work-
flow assembly as a goal-conditioned planning problem. Leveraging
language agents, such a framework may reason over asset metadata,
infer task requirements, and iteratively assemble workflows [80].
Reproducibility: Benchmarking and Model Provenance. ML-asset
management streamlines benchmarking, allowing researchers to
evaluate algorithms against standard datasets and baselines stored
in asset repositories [41]. Employing established procedures by
leveraging version-controlled and validated resources significantly
improves the reproducibility of experiments [67]. A second crit-
ical aspect is tracking model provenance [46, 56], which aims to
track a model’s lineage data (training data, preprocessing, hyper-
parameters, source code, evaluation metrics and results). Model
provenance allows others to replicate experiments, verify reported
results, and gain insights in their reusability [60]. Data provenance
such as “Why-provenance” can be adapted to generate post-hoc
explanations for tracking ML model outputs, as observed in [8, 58].
Responsibility: Licensing and Ethical Asset Governance. Responsi-
ble ML-asset utilization starts with clear licensing and agreements
that govern how an asset may be used, adapted, or distributed. Li-
censing information often suffers from inconsistency during the
reuse and republishing of licensed materials [77]. As an open stan-
dard forAI Bills of Materials (BOM), Software Package Data Exchange
3.0 (SPDX 3.0) [4] enables the structured recording of ML assets
and their associated licensing information throughout the devel-
opment lifecycle, potentially supporting automated license-related
analyses, such as detecting compatibility issues [30], inconsisten-
cies [76, 77], and license proliferation [20]. Existing license compli-
ant analysis tools such as FOSSology [27], Carneades [22], ModelGo
Analyzer [14] and Black Duck [26] may extend to ML projects if AI
BOM is avaliable. Unfortunately, SPDX 3.0 is not yet integrated into



mainstream ML tools, and model development disclosure remains
unstandardized. Moreover, commonly used model file formats (e.g.,
Safetensors, GGUF, and OpenVINO IR) do not embed license meta-
data, leading to inconsistency of licensing information.ML-asset
utilization remains subject to uncertain legal compliance risks.

Beyond licensing, responsible reuse also involves privacy and
transparency issues which are expected to be captured through
metadata documentation (e.g., model/data cards and provenance
data). However, this remains challenging due to the variation in AI-
related regulations across jurisdictions. Meanwhile, the use policies
of the model vendors (enforceable under contract law) must also
be complied with. Material breaches of either applicable laws or
licenses/agreements may result in legal consequences.

2.4 System Challenges & Opportunities
Treating ML assets as first-class citizens indicates new types of
ML-asset management systems. As ML assets grow rapidly in size,
complexity, and volume, there is a need to revisit data management
systems on how to best explore them inML-asset management.
Storage and Scalability. ML assets, particularly large models and
datasets, pose substantial storage challenges due to their rapidly in-
creasing size and complexity. Techniques have emerged as scalable
solutions, such as compressed binary formats like Safetensors
provide safe, zero-copy tensor storage, enabling faster and secure
model loading during deployment [6]. Earlier systems likeModelDB
adopted a lightweight design by storing only essential metadata
while keeping large binaries in external object storage[68]. Other
efforts, such as Model Lake, leverage distributed storage infras-
tructure[19], etc. Ensuring efficiency, security, and consistency at
scale remains an open research challenge.
Versioning and Lineage. Versioning and lineage tracking are cru-
cial for reproducibility and auditability in data science. Delta-
based version control systems, inspired by Git, allow efficient
management of evolving datasets and models by capturing fine-
grained changes along with detailed metadata [43]. Provenance
systems like ProvDB represent ML workflows as graphs, enabling
rich queries over asset lineage and dependencies [42]. Nonetheless,
scalability remains a considerable challenge, and the potential for
lineage reuse is an area that warrants further investigation [55].
Indexing and Searching. To efficiently search through a large
volume of assets, powerful indexing mechanisms are essential. Sup-
porting heterogeneous information, such as structured metadata,
graph-based lineage, and semantic embeddings, poses challenges
for hybrid query execution. Early attempts often relied on interfaces
that surfaced all data types separately (e.g., via tabbed views) [19],
but hybrid indexes offer amore unified and performant solution [53].
Additionally, it is important to maintain index freshness with min-
imal cost, while also considering privacy and security concerns.
There are several potential directions: (1) Explore vector database
systems [52] and optimization techniques in vector processing
for large-scale ML-asset search. (2) Text-rich domain languages,
datahubs, and application scenarios ofML assets continue to enrich
their metadata and features, hence in turn providing opportunities
of recent Large Langage Models (LLMs) and Retrieval Augmented
Generation (RAG) methods in ML-asset recommendation.

3 DEMONSTRATION
We will walk through several ML-asset management tools and
showcase how they may benefitML-asset management tasks.
CRUX: ML-Asset Curation and Discovery. CRUX [72] is a crowd-
sourced platform for curatingML assets analysis for materials data
science. It captures rich metadata and model–dataset interactions
using domain-specific ontologies co-designed with materials sci-
entists. CRUX supports model recommendation and data discov-
ery [73]. We will demonstrate asset ingestion, metadata visualiza-
tion, and search over asset knowledge graphs.
ModelGo:ML-Asset License Analyzer and License set. We demon-
strate the following: ModelGo Analyzer [12, 14], an ontology-based
tool for automated license compliance analysis inML projects. It
evaluates licensing-related issues such as rights granting, term con-
flicts, and incompatibility between licenses. ModelGo Licenses [11]:
a new Creative Commons-style model-specific license set designed
for general model publication. It supports flexible licensing options
to meet diverse model sharing needs.
Texera: Collaborative Workflow Composition. Texera [66, 75] is an
open-source platform designed to support collaborative data science
and AI/ML. It offers a GUI-based workflow interface that enables
analysts with diverse technical backgrounds to contribute effec-
tively. Analysts can collaboratively edit workflows, interact with
live executions [35], and jointly debug a workflow execution [25]
in real time. Texera also supports reproducibility and determinstic
replays [49] by preserving execution configurations and histories.
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